溫度測(cè)量應(yīng)用中有多種類型的傳感器,熱電偶是最常用的一種,可廣泛用于汽車、家庭等。與電阻式溫度檢測(cè)器(RTD)、熱電調(diào)節(jié)器、溫度檢測(cè)集成電路(IC)相比,熱電偶能夠檢測(cè)更寬的溫度范圍,具有較高的性價(jià)比。另外,熱電偶的魯棒性、可靠性和快速響應(yīng)時(shí)間使其成為各種工作環(huán)境下的首選。當(dāng)然,熱電偶在溫度測(cè)量中也存在一些缺陷,例如線性特性較差。除此之外,RTD和溫度傳感器IC可以提供更高的靈敏度和精度,可以很理想地用于精確測(cè)量系統(tǒng)。熱電偶信號(hào)電平很低,常常需要放大或高分辨率數(shù)據(jù)轉(zhuǎn)換器進(jìn)行處理。如果排除上述問題,熱電偶的低價(jià)位、易使用、寬溫度范圍可以使其得到廣泛使用。
熱電偶與冷結(jié)點(diǎn)補(bǔ)償
熱電偶是差分溫度測(cè)量器件,由兩段不同的金屬線構(gòu)成,一段用作正結(jié)點(diǎn),另一段用作負(fù)結(jié)點(diǎn)。表1列出了四種最常用的熱電偶類型、所用金屬以及對(duì)應(yīng)的溫度測(cè)量范圍。熱電偶的兩種不同金屬線焊接在一起后形成兩個(gè)結(jié)點(diǎn),如圖1a所示,環(huán)路電壓是兩個(gè)結(jié)點(diǎn)溫差的函數(shù)。這利用了Seebeck效應(yīng),通常描述為熱能轉(zhuǎn)換為電能的過程。Seebeck效應(yīng)與Peltier效應(yīng)相反,Peltier效應(yīng)為電能轉(zhuǎn)換成熱能的過程,典型應(yīng)用有熱電致冷器。如圖1a所示,測(cè)量電壓VOUT是檢測(cè)結(jié)點(diǎn)(熱結(jié)點(diǎn))結(jié)電壓與參考結(jié)點(diǎn)(冷結(jié)點(diǎn))結(jié)電壓之差。因?yàn)閂H和VC是由兩個(gè)結(jié)的溫度差產(chǎn)生的,VOUT也是溫差的函數(shù)。比例因數(shù)α對(duì)應(yīng)于電壓差與溫差之比,稱為Seebeck系數(shù)。
圖1b所示是一種最常見的熱電偶應(yīng)用。該配置中引入了第三種金屬(中間金屬)和兩個(gè)額外的結(jié)點(diǎn)。本例中,每個(gè)開路結(jié)點(diǎn)與銅線電氣連接,這些連線為系統(tǒng)增加了兩個(gè)額外結(jié)點(diǎn),只要這兩個(gè)結(jié)點(diǎn)溫度相同,中間金屬(銅)不會(huì)影響輸出電壓。這種配置允許熱電偶在沒有獨(dú)立參考結(jié)點(diǎn)的條件下使用。VOUT仍然是熱結(jié)點(diǎn)與冷結(jié)點(diǎn)溫差的函數(shù),與Seebeck系數(shù)有關(guān)。然而,由于熱電偶測(cè)量的是溫度差,為了確定熱結(jié)點(diǎn)的實(shí)際溫度,冷結(jié)點(diǎn)溫度必須是已知的。冷結(jié)點(diǎn)溫度為0℃(冰點(diǎn))時(shí)是一種最簡(jiǎn)單的情況,如果TC=0℃,則VOUT=VH。這種情況下,熱結(jié)點(diǎn)測(cè)量電壓是結(jié)點(diǎn)溫度的直接轉(zhuǎn)換值。美國國家標(biāo)準(zhǔn)局(NBS)提供了各種類型熱電偶的電壓特征數(shù)據(jù)與溫度對(duì)應(yīng)關(guān)系的查找表,所有數(shù)據(jù)均基于0℃冷結(jié)點(diǎn)溫度。利用冰點(diǎn)作為參考點(diǎn),通過查找適當(dāng)表格中的VH可以確定熱結(jié)點(diǎn)溫度。
在熱電偶應(yīng)用初期,冰點(diǎn)被當(dāng)作熱電偶的標(biāo)準(zhǔn)參考點(diǎn),但在大多數(shù)應(yīng)用中獲得一個(gè)冰點(diǎn)參考溫度不太現(xiàn)實(shí)。如果冷結(jié)點(diǎn)溫度不是0℃,那么,為了確定實(shí)際熱結(jié)點(diǎn)溫度必須已知冷結(jié)點(diǎn)溫度?紤]到非零冷結(jié)點(diǎn)溫度的電壓,必須對(duì)熱電偶輸出電壓進(jìn)行補(bǔ)償,即所謂的冷結(jié)點(diǎn)補(bǔ)償。
選擇冷結(jié)點(diǎn)結(jié)溫測(cè)量器件
為了實(shí)現(xiàn)冷結(jié)點(diǎn)補(bǔ)償,必須確定冷結(jié)點(diǎn)溫度,這可以通過任何類型的溫度檢測(cè)器件實(shí)現(xiàn)。在通用的溫度傳感器IC、熱電調(diào)節(jié)器和RTD中,不同類型的器件具有不同的優(yōu)缺點(diǎn),需要根據(jù)具體應(yīng)用進(jìn)行選擇。對(duì)于精度要求非常高的應(yīng)用,經(jīng)過校準(zhǔn)的鉑RTD能夠在很寬的溫度范圍內(nèi)保持較高精度,但其成本很高。精度要求不是很高時(shí),采用熱敏電阻和硅溫度傳感器IC能夠提供較高的性價(jià)比,熱敏電阻比硅IC具有更寬的測(cè)溫范圍,而溫度傳感器IC具有更高的線性度,因而性能指標(biāo)更好一些。修正熱敏電阻的非線性會(huì)占用較多的微控制器資源。溫度感應(yīng)IC具有出色的線性度,但測(cè)溫范圍很窄。
因此,必須根據(jù)系統(tǒng)的實(shí)際需求選擇冷結(jié)點(diǎn)溫度測(cè)量器件,需要仔細(xì)考慮精度、溫度范圍、成本和線性指標(biāo),以便得到最佳的性價(jià)比。
查找表方法
一旦你建立了一種冷結(jié)點(diǎn)補(bǔ)償?shù)姆椒ǎa(bǔ)償輸出電壓必須轉(zhuǎn)換成相應(yīng)的溫度,一種簡(jiǎn)單的方法是采用來自NBS的查找表。用軟件實(shí)現(xiàn)查找表需要存儲(chǔ)器來存儲(chǔ),但是在需要連續(xù)不斷地進(jìn)行測(cè)試時(shí),這些表提供了一種快速和準(zhǔn)確的解決方案。兩種用于將熱偶電壓轉(zhuǎn)換成溫度的其他方法需要不僅僅是查找表,這兩種方法是:使用多項(xiàng)式系數(shù)的線性近似值和熱電偶輸出信號(hào)的模擬線性化。
軟件線性值很流行,這是因?yàn)槌祟A(yù)先定義了的多項(xiàng)式系數(shù)以外,不需要存儲(chǔ)。這種方法的缺點(diǎn)是與多階多項(xiàng)式(multiple-order polynomial)相關(guān)的處理時(shí)間問題。對(duì)于更多階的多項(xiàng)式,處理時(shí)間進(jìn)一步增加。對(duì)于需要多次多項(xiàng)式的溫度測(cè)量應(yīng)用來說,查找表可能比線性近似值方法更有效且更準(zhǔn)確。
在軟件用來實(shí)現(xiàn)測(cè)量電壓到溫度(除了手動(dòng)搜索查找表以外)的轉(zhuǎn)換之前,人們通常采用模擬線性化方法。這種基于硬件的方法使用模擬電路來修正熱偶響應(yīng)的非線性。其準(zhǔn)確性決定于采用近似修正的階數(shù)。這種方法依然廣泛應(yīng)用在那些接收熱偶信號(hào)的萬用表中。
應(yīng)用電路
下面討論了三種利用硅傳感器IC進(jìn)行冷結(jié)點(diǎn)補(bǔ)償?shù)牡湫蛻?yīng)用,三個(gè)電路均用來解決溫度范圍較窄(0℃至+70℃和-40℃至+85℃)的冷結(jié)點(diǎn)溫度補(bǔ)償,精度在幾個(gè)攝氏度以內(nèi)。第一個(gè)電路在鄰近冷節(jié)點(diǎn)的地方采用了一個(gè)溫度感應(yīng)IC來確定其溫度;第二個(gè)電路包含一個(gè)遠(yuǎn)結(jié)點(diǎn)二極管溫度檢測(cè)器,由連接成二極管的晶體管(直接連接到熱電偶的連接頭)為其提供測(cè)試信號(hào);第三個(gè)電路中的模/數(shù)轉(zhuǎn)換器(ADC)內(nèi)置冷結(jié)點(diǎn)補(bǔ)償。所有三個(gè)電路均采用K型熱電偶(由鎳鉻合金和鎳基熱電偶合金組成)進(jìn)行溫度測(cè)量。
1. 典型應(yīng)用一
圖2所示電路中,16位ADC將低電平熱電偶電壓轉(zhuǎn)換成16位串行數(shù)據(jù)輸出。集成可編程增益放大器有助于改善A/D轉(zhuǎn)換的分辨率,這對(duì)于處理熱電偶小信號(hào)輸出非常必要。溫度檢測(cè)IC靠近熱電偶接頭安裝,用于測(cè)量冷結(jié)點(diǎn)附近的溫度。這種方法假設(shè)IC溫度近似等于冷結(jié)點(diǎn)溫度。冷結(jié)點(diǎn)溫度傳感器輸出由ADC的通道2進(jìn)行數(shù)字轉(zhuǎn)換。溫度傳感器內(nèi)部的2.56V基準(zhǔn)節(jié)省了一個(gè)外部電壓基準(zhǔn)IC。
工作在雙極性模式時(shí),ADC可以轉(zhuǎn)換熱電偶的正信號(hào)和負(fù)信號(hào),并在通道1輸出。ADC的通道2將MAX6610的單結(jié)點(diǎn)輸出電壓轉(zhuǎn)換成數(shù)字信號(hào),提供給微控制器。溫度檢測(cè)IC的輸出電壓與冷結(jié)點(diǎn)溫度成正比。為了確定熱結(jié)點(diǎn)溫度,需首先確定冷結(jié)點(diǎn)溫度,然后通過NBS提供的K型熱電偶查找表將冷結(jié)點(diǎn)溫度轉(zhuǎn)換成對(duì)應(yīng)的熱電電壓(thermoelectric voltage)。將此電壓與經(jīng)過PGA增益校準(zhǔn)的熱電偶讀數(shù)相加,最后再通過查找表將求和結(jié)果轉(zhuǎn)換成溫度,所得結(jié)果即為熱結(jié)點(diǎn)溫度。
表2列出了溫度測(cè)量結(jié)果,冷結(jié)點(diǎn)溫度變化范圍:-40℃至+85℃,熱結(jié)點(diǎn)保持在+100℃。實(shí)際測(cè)量結(jié)果的精度在很大程度上取決于本地溫度檢測(cè)IC的精度和烤箱溫度。
2. 典型應(yīng)用二
圖3所示電路中,遠(yuǎn)結(jié)點(diǎn)溫度檢測(cè)IC測(cè)量電路的冷結(jié)點(diǎn)溫度,與本地溫度檢測(cè)IC不同的是IC不需要靠近冷結(jié)點(diǎn)安裝,而是通過外部連接成二極管的晶體管測(cè)量冷結(jié)點(diǎn)溫度。晶體管直接安裝在熱電偶接頭處。溫度檢測(cè)IC將晶體管的測(cè)量溫度轉(zhuǎn)換成數(shù)字輸出。ADC的通道1將熱電偶電壓轉(zhuǎn)換成數(shù)字輸出,通道2沒有使用,輸入直接接地。外部2.5V基準(zhǔn)IC為ADC提供基準(zhǔn)電壓。
表2、3列出了溫度測(cè)量結(jié)果,冷結(jié)點(diǎn)溫度變化范圍:-40℃至+85℃,熱結(jié)點(diǎn)保持在+100℃。實(shí)際測(cè)量結(jié)果精度在很大程度上取決于遠(yuǎn)結(jié)點(diǎn)二極管溫度檢測(cè)IC的精度和烤箱溫度。
3. 典型應(yīng)用三
圖4電路中的12位ADC帶有溫度檢測(cè)二極管,溫度檢測(cè)二極管將環(huán)境溫度轉(zhuǎn)換成電壓量,IC通過處理熱電偶電壓和二極管的檢測(cè)電壓,計(jì)算出補(bǔ)償后的熱結(jié)點(diǎn)溫度。數(shù)字輸出是對(duì)熱電偶測(cè)試溫度進(jìn)行補(bǔ)償后的結(jié)果,在0℃至+700℃溫度范圍內(nèi),器件溫度誤差保持在±9LSB以內(nèi)。雖然該器件的測(cè)溫范圍較寬,但它不能測(cè)量0℃以下的溫度。
表4是圖4所示電路的測(cè)量結(jié)果,冷結(jié)點(diǎn)溫度變化范圍:0℃至+70℃,熱結(jié)點(diǎn)溫度保持在+100℃。